Role of hyperpolarization-activated cation channels in pyeloureteric peristalsis
نویسندگان
چکیده
منابع مشابه
Blocker State Dependence and Trapping in Hyperpolarization-Activated Cation Channels
Hyperpolarization-activated cation currents (I(h)) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned I(h) channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but...
متن کاملHyperpolarization-activated cation channels: from genes to function.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a small subfamily of proteins within the superfamily of pore-loop cation channels. In mammals, the HCN channel family comprises four members (HCN1-4) that are expressed in heart and nervous system. The current produced by HCN channels has been known as I(h) (or I(f) or I(q)). I(h) has also been designated as pacemaker c...
متن کاملThe pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis.
Peristaltic waves of the ureteric smooth muscles move urine down from the kidney, a process that is commonly defective in congenital diseases. To study the mechanisms that control the initiation and direction of contractions, we used video microscopy and optical mapping techniques and found that electrical and contractile waves began in a region where the renal pelvis joined the connective tiss...
متن کاملHyperpolarization-activated Ca2+ channels
Important aspects of the regulatory properties of plant calcium channels have been discovered during the past few years. These include the control of plasma membrane-bound channels by regulatory proteins and the characterization of a plethora of intracellular calcium release channels. Deciphering the mechanisms of regulation of different Ca2+ channels and the probable co-operation of their acti...
متن کاملCalcium influx through hyperpolarization-activated cation channels (I(h) channels) contributes to activity-evoked neuronal secretion.
The hyperpolarization-activated cation channels (I(h)) play a distinct role in rhythmic activities in a variety of tissues, including neurons and cardiac cells. In the present study, we investigated whether Ca(2+) can permeate through the hyperpolarization-activated pacemaker channels (HCN) expressed in HEK293 cells and I(h) channels in dorsal root ganglion (DRG) neurons. Using combined measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kidney International
سال: 2010
ISSN: 0085-2538
DOI: 10.1038/ki.2009.485